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ON BOUNDARY INTEGRAL EQUATIONS IN ELECTROELASTICITY* 

A.O. VATUL'YAN and V.L. KUBLIKOV 

A class of plane electroelasticity problems of the steady vibrations of 
bodies with a smooth boundary is studied. A system of boundary integral 
equations for the components of the displacement vector and the 
potential is formulated on the basis of the fundamental solution 
constructed and its analysis. 

1. Let the body occupy a two-dimensional connected domain Q in the =1Q. plane 
bounded by a smooth closed contour L. Let L=LlUL* (LlpL*=@), where the part Ll of the 
boundary is electroded while the other part La is not. 

We apply a generalization of the Betti reciprocity theorem to the case of an electro- 
elastic medium /l/ to derive the fundamental system of integral equations by assuming that the 
vibrations mode is steady and obeys the law exp(-iot). In conformity with the theorem, we 
examine two states of the medium u~J, u:), ,$"J, ojjL), DPJ, n- 1.2. 

These states are described by a system of electroelasticity equations (here, unlike /l/, 
we consider an inhomogeneous equation for the electric field) 

oW.+ xW+po%W Ez 0, &I ’ t i = 1 3. Of’), + f’“’ = 0; ” 9 n-l,2 (1.1) 

where f is the electric charge density, and Dk are the components of the electric induction 
vector. Taking account of the governing relationships o$')- cijr&- ekijEr’, n=l, 2 we have 

from the first two equations in (1.1) /l/ 

Using the relationship 
Dp’ = ekije$?’ + e kjE(jn), n = I, 2 

and considering the electric field potential: El,= -iplk, we analogously obtain 

-S 
L 

(Df)@) - Dz)cp(‘)) “k dL - 1 (j(‘)q~(~) - j@)t$)) dQ r= ekij 1 (e$)@) -$‘Ep’) do 
n Q 

(1.3) 

from the last relationship in (1.1). 
Comparing (1.2) and (1.3), we have 

(1.4) 

Tij = oij, T,, = D<. i, j = 1, 3 

Considering the desired displacement distribution as the first state in (1.4) and the 
potential for F!') - 0 x(l) = I,, T(A) 

1 ‘1 
,, - T~J, as the second (known), we select the state corresponding 

to a concentrated generalized load at the point Z= %, where z = (z~, Q), % = (%,, %& FP) = 8{,,,6 (*, 
E) Pi", is the Kronecker delta, and s(=,%) is a two-dimensional delta-function). The 
fundamental solution Ipj"') of system (1.1) corresponds to this generalized load. We therefore 

obtain from (1.4) 

S T*j (' 19 
L 

Ia) y$"' (51 - 21, %s- 18) ni(zl,zg) dLx = 
(I.9 
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Relationship (1.5) enables us to find the displacement and the potential w within the 
body if they are known on its boundary. 

2. Let us construct the fundamental solution of system (1.1) of electroelasticity 
equations in the case of practical importance when the material of the medium is a piezoceramic, 
polarized in the direction of the I,-axis. 

Solving system (1.1) in this case /2/ by using a two-dimensional Fourier integral 
representation, we have 

(2.1) 

Here r is a surface coinciding everywhere with the plane R'with the exception of a set 
of real zeros of the polynomial p0 (aI,al,k), which it envelopes in confirmity with the principle 
of ultimate absorption /3/ pkm(al, al, h) is obtained from po (a,,a,,h) by replacing the k-th 
column by the column (&,&,,8~,,,). 

Let us investigate the structure of the set of zeros PO (%,all,k). Changing to dimansion- 
hS8 coordinates a,=kficos@,a8=.k~sin~ and taking into account the homogeneity of the poly- 

nomial p. (a,, 01~. 4, we obtain 

where h, ($4 # 0 for all Y E IO, 2~1. We note that 

Rk(~++X)=Rk(~)=Rk(-g), k=i,2 

Graphs of the functions R, (9) and RI (9) for CdS (the solid lines) and the ceramic 
TsTS-19 (the dashed lines) are shown in the figure for I~EIO,IT/~I (curves 1 and 2, respectively). 
Therefore, the surface r in (2.1) ca be represented in the form T = u+(Y) x [0,2nl, where the 
contour 'J+ (N issues from the origin and coincides with the real positive semi-axis and 
derivatives from it at the real poles Rk(q) (k-f, 2) in the lower half-plane. 

We further convert (2.1) to the form 

(2.2) 

Using the expansions 
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we convert equality (2.2) into a form containing just single integrals, as is important for 
applications 

n 2 
1 

Y~mm)(rCOStl,rsinl))=~II,+~ 
!r 
D j$ 

rr~~',(g)(niexpIizj(r,rp,rl)l - 

2'j (r* $9 11)) a$, k = i,2, 3; J1= I* = 0, 

$1 (rv $9 1) = *rRj (9) I ~0s (rp - 9) I 

m 

Sj (r. $. rl) = Cos zi ci zj + sin P si zj; si (t) = - 
s 

+t; 
* 

Regularization of the integral I, must be realized in 
concept of the Hadamard finite value /5/ 

m 

ci (t) = - s cost 
7 dt 

t 

calculating Y&"') by using the 

where C is Euler's constant. 

Thus (2.3) determine the fundamental solution Yl;("')(k - 1,2,3) of system (1.1). 

3. We will derive the fundamental system of boundary integral equations. To do this the 
passage to the limit as g-y=L must be made in (1.5). Applying the well-known procedure 
/4/, we have (L, is an arc of a circle of radius e with centre at y) 

We consider the limit of the first integral on the right-hand side of (3.1) by setting 
B = ule in representation (2.2) and going over to the local coordinate system Z~ =y,+ecosR 
e, = ys + e sin tl n., 

(3.2) 
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For j =2 we obtain an analogous expression by replacing ccar by eik, and elf) by efl 
in (3.2). Here 

cone, l=I, 

Nl @) = ( sin 8, 2 s 3, ’ ‘IF’ (6 rl) = 
II 

ss P(km) (u cos (1. v sin 11, e*) us exp [- iku eos (q - e) J N, (0) dv d@ 

0 a+ 

We evaluate the limit 

(3.3) 

Substituting (3.3) into (3.2) and carrying out the requisite reduction, we find that 

C,(m) - --%8j* (3.4) 

The limit of the second integral on the right-hand side of (3.1) is the Cauchy principal 
value. In passing, we note that 

2 S T*j(Z1*2S)yTjm)(L!- 
L, 

21, va - $3 ni(zl,t~ dLx = 0 (3.5) 

is calculated analogously. 
Therefore, to take account of (3.1), (3.4), and (3.5), we obtain after passing to the 

limit as t-r in (1.5) 

Thus, the plane problem of the steady vibrations of an electroelastic medium is reduced 
to a system of three singular integral equations. We note that the well-developed methods of 
boundary elements /4/ are sufficiently efficient for systems of this kind, and enable the 
mechanical and electric fields to be calculated for a broad class of linear electroelasticity 
problems. 
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